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Abstract— We propose a co-navigation algorithm that enables
a human and a robot to work together to navigate to a
common goal. In this system, the human is responsible for
making high-level steering decisions, and the robot, in turn,
provides haptic feedback for collision avoidance and path
suggestions while reacting to changes in the environment. Our
algorithm uses optimized Rapidly-exploring Random Trees
(RRT∗) to generate paths to lead the user to the goal, via an
attractive force feedback computed using a Control Lyapunov
Function (CLF). We simultaneously ensure collision avoidance
where necessary using a Control Barrier Function (CBF). We
demonstrate our approach using simulations with a virtual pilot,
and hardware experiments with a human pilot. Our results
show that combining RRT∗ and CBFs is a promising tool for
enabling collaborative human-robot navigation.

I. INTRODUCTION

Navigating vehicles through complex, cluttered environ-
ments can be extremely difficult, especially when operating
large vehicles such as powered wheelchairs. Fully autonomous
vehicles are not yet sophisticated enough to be able to navigate
our world while maintaining their own safety and the safety of
humans. Thus, humans are still necessary for the operation of
such vehicles, although robots can bring their own strengths
to human-robot systems. While much of existing research
explores fully autonomous systems or collision avoidance
systems, we propose a collaborative human-robot system,
where the human and the robot co-navigate to a common
goal. In such a system, the human is ultimately responsible for
making decisions about where to steer the robot. However,
the robot uses its own information about its environment
to provide collision avoidance and path suggestions to the
human via haptic feedback. This approach takes advantage
of both human and robot autonomy.

We envision two scenarios where the proposed approach
could be useful. First, in the operation of personal mobility
devices, such as powered wheelchairs, which can be especially
challenging for novice users. Wheelchair users encounter
cluttered environments (such as restaurants and other public
places) every day, and avoiding obstacles can be difficult
with a relatively large vehicle. A co-navigation scheme with
a haptic joystick and sensors incorporated into powered
wheelchairs could significantly ease operation: onboard
sensors aid in obstacle detection, and high-level path planners
can provide suggestions toward the user’s goal.
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(a) Operator view. (b) Overhead view.

Fig. 1: Hardware experimental setup with a human user teleoperating a
ground robot through a cluttered environment (b), with a first-person view
(top of (a)) streamed from the robot to the computer screen. The human
operator uses a Geomagic Touch haptic device (bottom of (a)) to control the
robot, and force feedback is provided to the human for navigation assistance
and collision avoidance.

The second scenario is in the teleoperation of a robot
through a remote environment. In situations like these, the
human pilot typically has a limited field of view of the
environment (see Figure 1a for an example). The limited pe-
ripheral vision can easily result in collisions with unforeseen
obstacles. Moreover, in repetitive environments (such as a
pine forest) the pilot might get disoriented and lose sight of
the direction to follow toward their goal. In this case, the
robot can use sensor data to create an haptic force feedback
that helps avoid collisions and guides the user.

Related Work

Previous related work includes both collaborative tele-
operation and safety-critical robot motion planning. In the
context of collaborative teleoperation, haptic guidance has
been proved as a promising approach to improve robot safety
and intention transparency by providing extra feedback to the
human operator. Haptic feedback has a variety of applications
in robotic manipulation [1]–[3], autonomous vehicles [4]–[7],
and powered wheelchairs [8], [9].

The use of haptic feedback in a teleoperation settings has
traditionally been used as a collision avoidance mechanism,
where the result is a repulsive force field pointing away
from obstacles. This has been studied in ground vehicles
such as wheelchairs [8], [10], where the repulsive force is
scaled based on the distance from obstacles. To improve
the safety in the teleoperation of unmanned aerial vehicles
(UAVs), researchers have proposed Parametric Risk Fields
(PRFs) [4] and Dynamic Kinesthetic Boundaries (DKBs) [5].
More recently, Control Barrier Functions (CBFs) have gained
significant attention as an effective approach for generating
safe control policies that achieve collision avoidance in robotic
systems. The authors’ prior work [7], [11] uses CBFs to



generate force feedback that helps the user to issue a command
that is safe but as close as possible to their intentions. The
results in [7], [11] show that collision avoidance through
CBFs significantly improves the user’s experience [12].

Closer to this paper, some works have proposed a more
collaborative navigation paradigm, in which robots guide the
human user to a target while providing collision avoidance.
In [9], a haptic feedback algorithm designed for wheelchairs
switches between a collision avoidance mode and a mode
that suggests short, circular paths to the user. The authors of
[13] propose haptic feedback for the teleoperation of UAVs
in which a DKB is used for collision avoidance and RRT∗

for route suggestions. The authors’ prior work [14] proposes
a similar control scheme for non-holonomic vehicles with
sample-based guarantees of collision-free navigation.

Paper contributions

A true co-navigation system enables the human and robot
to navigate to a common goal while ensuring the safety of
the vehicle. In this paper, we combine the benefits of RRT∗

for route suggestions [14] with those of CBFs for collision
avoidance [7]. The former guides the user (and ultimately
the robot) toward the common goal, while the latter ensures
collision avoidance for dynamic or unexpected obstacles not
captured by the planner. The main features and contributions
of our paper are the following:

• We incorporate the sample tree from RRT∗ into a Control
Lyapunov Function (CLF) formulation to create haptic
suggestions toward kinematically feasible paths. With
respect to previous work that uses CBFs for collision
avoidance alone, in our method the user can allow the
robot to autonomously move toward the goal.

• Standard planners such as RRT∗ approximate a (typically
static) free configuration space with a finite number
of samples. As such, obstacles that are small, highly
dynamic, or unknown at planning time may cause
collisions when the plan is executed. The use of CBFs
provides cues that help the user avoid collisions without
the need to resample the RRT∗ tree.

• The user maintains ultimate control authority and may
stop the robot or change to a different path as necessary.
At the same time, the user can also voluntarily relinquish
control and allow the robot to navigate autonomously
by simply releasing the haptic interface.

In the remainder of this paper, we first provide preliminary
technical details related to CLFs, CBFs, and RRT∗ (Section II).
We then present the details of our proposed solution for haptic
feedback generation (Section III), together with results in
both simulations and hardware experiments (Section IV).

II. PRELIMINARIES AND BACKGROUND

In this section, we provide the technical background
necessary for this paper. We briefly discuss the theory of
Control Lyapunov Functions (CLFs) and Control Barrier
Functions (CBFs), and then review the non-holonomic RRT∗

algorithm used for path suggestions. These are used in our
haptic feedback formulation and algorithm in Section III.

A. Notation

We first define the notation used in this paper. The set of
real numbers in n dimensions is denoted by Rn. The Lie
derivative of a smooth function h(x) along a field f(x) is
defined as Lfh(x)

.
= ∂h(x)

∂x f(x), where x is the robot state.
We denote the final goal of the human-robot system as xf.
We let the force feedback be denoted by F , and the user
steering input by uref.

B. CLFs and CBFs

CLFs and CBFs have initially been applied to adaptive
cruise control [15], [16], but they have been widely applied
to various applications where safe control is necessary
[17]–[19]. In particular, CBFs can be used to implement
a supervisory controller that modifies the user’s command
in the teleoperation of UAVs [12], [20]. Here we provide a
brief technical background on these formulations.

We consider a nonlinear affine control system of the form

ẋ = f(x) + g(x)u, (1)

with x ∈ Rn, u ∈ U ⊆ Rm, f : Rn → Rn and g : Rn →
Rn×m locally Lipschitz.

A continuously differentiable function V : Rn → R is a
globally and exponentially stabilizing CLF for system (1) if
there exist constants c1 > 0, c2 > 0 and p > 0 such that

c1∥x∥2 ≤ V (x) ≤ c2∥x∥2,
inf
u∈U

[LfV (x) + LgV (x)u+ pV (x) ≤ 0],∀x ∈ Rn.
(2)

Given a CLF V (x), any Lipschitz controller u ∈ U satisfying

LfV (x) + LgV (x)u+ pV (x) ≤ 0,

exponentially stabilizes the system (1) to the origin [15]. In
Section III we use a CLF that is tied to the tree produced by
RRT∗, and is used to pull the user toward the suggested path.

We implement collision avoidance using CBFs. We define
a safe set as the zero superlevel set of a continuously
differentiable function h : Rn → R as:

C := {x ∈ Rn : h(x) ≥ 0} .

The set C is forward invariant for system (1) if every solution
starting from any x(t0) ∈ C satisfies x(t) ∈ C for all t ≥ t0.
Given a safe set C, h(x) is a CBF if there exists a class K
function α such that

inf
u∈U

[Lfh(x) + Lgh(x) + α(h(x))u ≥ 0],∀x ∈ C.

Given a CBF h(x) with zero level set C, any Lipschitz
controller u ∈ U that satisfies

Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0,

makes C forward invariant for system (1) (i.e., safe) [19].
In practice, CLFs and CBFs work well for controllers

based on local information: for instance, in adaptive cruise
control [19], a CLF pulls the vehicle toward a desired speed,
while a CBF maintains a minimum distance with respect to
the preceding vehicle. However, when applied as a global



Fig. 2: Comparing CLF-CBF and RRT∗ as global path planners. The blue
dot represents the starting position, and the red cross × represents the goal
xf. Solid blue lines represent the RRT∗ tree, and dashed lines indicate the
robot trajectory under the different planners. Under CLF-CBF the robot gets
stuck in a local minimum. Under RRT∗, the robot is able to reach the goal.

Fig. 3: Egocentric polar coordinates used in the non-holonomic RRT∗

planner. Here, x1 is the robot position, and x2 is an arbitrary goal location;
v and ω are the linear and angular velocity of the robot; r and δ are the
radial and angular components of the polar coordinates of x2 with respect
to x1; ϕ is the angle between the line passing through x1, x2 and the robot
heading at x2.

planner, e.g., to navigate to a final goal xf trough a cluttered
environment, the CLF-CBF method can cause the robot to get
trapped in local minima; Figure 2 shows an example of such
behavior. This issue motivates the use of RRT∗ as a global
planner, which avoids local minima through sampling; see
Figure 2 for the comparison.

C. Non-holonomic RRT∗

Sampling-based approaches such as RRT and RRT∗ have
been widely explored and proved to be effective strategies for
global path planning [21]–[23]. In particular, in this paper we
use the non-holonomic RRT∗ algorithm from [23] to generate
the suggested paths for the user to follow toward the goal
location xf. A non-holonomic planner not only eases the
teleoperation of ground vehicles by generating smooth paths,
but we also anticipate that it will be more intuitive for a
human pilot, since prior studies have shown that humans can
be modeled as non-holonomic vehicles [24].

The authors of [23] use egocentric polar coordinates
(Figure 3) to define a distance between two sampled points
x1 and x2:

Dist(x1, x2) =
√
r2 + k2ϕϕ

2 + kδ|δ − δ∗|, (3)

where r > 0, ϕ, and δ are scalars as in Figure 3, r, ϕ, δ ∈ R,
δ∗ is a steering function denoting the target angle at x2,

δ∗(ϕ) = arctan (−kϕϕ) , (4)

and kϕ and kδ are positive constants (we set to kϕ = 1.2 and
kδ = 3.0 in all our simulations and experiments). Equation (3)

Fig. 4: A flow chart of the proposed haptic guidance and collision avoidance
architecture.

represents the approximate cost for extending the path from
node x1 to node x2. We use T and P to denote, respectively,
the tree produced by RRT∗ and the suggested path.
RRT∗ is asymptotically complete and optimal; however,

in practice, with a finite number of samples it might miss
obstacles that are too small, or are not represented well in
the map used for planning. Note that RRT∗ was integrated
with CBFs in [25]; while that solution alleviates the problems
caused by a finite number of samples, it makes the approach
computationally much more intensive. We present a different
way to use CBFs and design a force feedback that guides
the user to follow the RRT* path while avoiding collisions
in Section III.

III. HAPTIC GUIDANCE AND COLLISION AVOIDANCE

In this work, we introduce a haptic feedback algorithm that
provides a combination of collision avoidance and guidance
along a path to the goal of the user. For guidance, we propose
a CLF controller centered on a temporary goal xtg that is
dynamically computed along the path P suggested by RRT∗.
For collision avoidance, we propose a CBF controller (as
in [7]) that accounts for obstacles with position xobs. RRT∗,
CLF, and CBFs are then used to compute a control ucbf from
the human input uref. The difference between ucbf and uref
is used to compute the haptic force F . Figure 4 shows the
overall architecture of our system. .

A. CLF-CBF formulation

We use a two-step formulation to generate the control
input ucbf. First, we design the CLF V (x) as the Euclidean
distance from the robot to the temporary goal xtg on the
path P from RRT∗ (see also Section III-D for details on the
computation of xtg):

V (x) = ∥x− xtg∥2. (5)

Applying the CLF theory reviewed above, we compute the
minimum-norm control input uclf that satisfies the CLF
constraint (2) by solving (in closed form) the Quadratic
Program

uclf =argmin
u∈U

1

2
∥u∥2

subject to LfV (x) + LgV (x)u+ pV (x) ≤ 0.

(6)

Given (5) and (6), the generated uclf points toward the
temporary goal on the suggested path, but might also point
toward obstacles.



As second step, we define one CBF hi(x) for each obstacle
i as the Euclidean distance between the robot and the obstacle:

hi(x) = (x− xobs,i)
2 − r2obs,i − dsafe, (7)

where xobs,i ∈ R2 is the position of the i-th obstacle, robs,i ∈ R
denotes the radius of the obstacle, and dsafe ∈ R is a user-
defined safe distance, which can act as a buffer to account
for the size of the robot. Given the path-following input uclf,
we can compute the safe control input ucbf by

ucbf =argmin
u∈U

1

2
∥u− uclf∥2

subject to Lfh(x) + Lgh(x) + α(h(x)) ≥ 0.

(8)

This input ensures that, despite the RRT∗ path potentially
containing collisions, the suggested force feedback will
maintain the safety of the robot.

B. Force Feedback Design

As already mentioned, we design the haptic force feedback
F as the difference between the safe control input ucbf and
the user steering command uref:

F = kf(ucbf − uref), (9)

where kf ∈ R is a positive constant parameter to adjust the
magnitude of the feedback. This force feedback reflects the
disagreement between the user and the controller. If the user
chooses to follow the guidance from the force feedback, the
disagreement can be minimized.

Recall that we grant the user full control over the robot.
We therefore let the dynamics of the robot be

ẋ = uref.

In order to evaluate the efficacy of the force feedback (9),
we assume that the pilot can follow the force feedback F
while teleoperating the robot.

C. Virtual agreeable pilot

For the purpose of evaluating our approach in simulation
(Section IV), we introduce the notion of an agreeable virtual
pilot who follows the suggested commands through the
dynamics

u̇ref = F. (10)

Note that we cannot map uref directly to F , since the latter is
computed as a function of the former; instead, F is used to
gradually change uref. We the dynamic (10) in Lemma 1 to
show that, assuming the user can follow the force feedback
F as in (10), the robot maintains a safe state. Before we
can make this claim, we must assume that the constant kf is
large enough, such that the feedback F updates faster than
or equal to the robot speed, formalized in Assumption 1.

Assumption 1: The force feedback gain kf is large enough
that the uref changes much faster than the robot speed ẋ.

Lemma 1: Given Assumption 1, let the user be an agree-
able human, following dynamics (10). Then, the user input
uref tends to converge to the control suggested by the force
feedback F , keeping the robot in a safe state.

Proof: Let the user input evolve according to the
dynamics (10), following the force feedback F . Note that (10)
has an equilibrium point for F = 0, which, from (9), implies
that uref = ucbf. From Assumption 1, uref will change much
faster than ucbf. Thus, the virtual pilot tends to converge to
the control suggested by the autonomy controller. Assuming
that the CBF optimization problem (8) is feasible, then (8)
will output a safe control input ucbf that will ensure that
h(x) ≥ 0 [19]. In other words, ucbf will ensure that the robot
does not collide with an obstacle.

Lemma 1 shows that our force feedback (9) used by an
agreeable human pilot will keep the robot in a safe state. In
the next section, we show that the feedback is not only safe,
but it also steers the user on the path to the goal.

While this section introduced a virtual pilot for simulation
purposes, in reality, and in our human pilot demonstrations
(Section IV-B), the human acts autonomously and can override
the force if they wish, maintaining complete control authority.

D. Haptic Feedback Algorithm

Having defined the computation of the force feedback F ,
we now discuss our complete method to provide the force
feedback to the user. Our overall algorithm is outlined in
Algorithm 1 and visualized in Figure 4. We first initialize the
robot position x, final user goal xf, and obstacle positions and
sizes. We then compute and output the force feedback until
the robot reaches the goal. At each time step, we retrieve the
user input uref and robot position x. We update the temporary
goal xtg using Algorithm 2; the temporary goal, used by the
CLF controller, is defined as a point along the path ahead of
the robot. We compute the CLF using (5), and then apply
(6) to compute the corresponding control input uclf. Since
the RRT∗ path P is not guaranteed to be collision-free due to
finite sampling or dynamic obstacles, we use (8) to compute
the safe input ucbf that will be encoded in the force feedback.
Before sending the force feedback to the user, we ensure that
if the user steering command is zero, such as when the user
brakes, then we do not provide any force feedback. Otherwise,
output the force feedback (9). This process is repeated until
the robot position x is within a distance ϵ from the final goal
xf . We now describe Algorithms 2 and 3 in detail.

1) getTempGoal: In order to compute the temporary goal,
we use Algorithm 2. Prior to starting the haptic feedback
generation in Algorithm 1, we initialize the RRT∗ tree T and
optimal path P . The tree is generated from the final goal
xf to the initial position x(t0) to ensure that any path the
user decides to take will lead to the goal. Since we use a
unicycle robot model, the robot can track the non-holonomic
RRT∗ path in either direction. The initial tree T is saved and
utilized for the entirety of Algorithm 1, i.e. until the robot
reaches the goal xf.

We also initialize the positive constant dmax, which is a
parameter we use to determine whether the human rejects
the suggested path P . For example, if the human can see
obstacles that the robot cannot detect, then the user may
decide to take a different path to the goal. We define dmax

as the maximum permissible distance between the robot and



the path P . If the user steers the robot away from the path,
and the distance between the robot and path is greater than
dmax, then we find a new suggested path in the tree T .

We also initialize the constant integer c > 0, c ∈ R, which
is a dynamic index used to define the temporary goal. In
Algorithm 2, we define the temporary goal as the nearest
point on the discretized path P to the robot with plus c points
of lookahead. For instance, let xnear be the point on P closest
to the robot. If c = 50, then xtg will be 50 points ahead of
xnear toward the goal xf on P .

We can now summarize the process of determining the
temporary goal (Algorithm 2) – required for the computation
of uclf in Algorithm 1 – as follows. We first compute the
distance from the robot to the current suggested path P . If
the user rejects the suggested path, then we redefine P using
Algorithm 3. We then find the nearest point Pinear with respect
to the robot position. Then we define the temporary goal as
c points ahead of Pinear . If inear + c exceeds the length of the
path, i.e. Pinear does not exist, then we set the temporary goal
as the last element in P , which is the goal xf.

Under Algorithm 2, the input uclf is guaranteed to drive
the robot to the final goal xf, as formalized in Proposition 1
below. We first have to assume, however, the following:

Assumption 2: An optimal collision-free path P exists
from the robot position x to the final goal xf. Furthermore,
any path in the tree T is a path to the goal xf.

Proposition 1: Given Assumptions 1 and 2, the control
uclf drives the robot from any point x to the final goal xf.

Proof: Recall that the temporary goal xtg is required
to compute the CLF input. Specifically, xtg is used in the
CLF (6) such that the input uclf will drive the robot to the
temporary goal, i.e. x → xtg as t → ∞. Note that, under
Algorithm 1, xtg changes at each time step, but xtg is always
on the path. Therefore, uclf will always drive x to a point on
the path P and in the direction of the final goal xf. Note also
that as the robot nears the end of the path, the temporary goal
xtg coincides with the goal location xf (Algorithm 2 Lines
7-9). Therefore, the control input uclf will always guide the
user to the goal, i.e. x→ xf as t→∞.

Remark 1: By (8), the input ucbf is guaranteed to be safe,
while being as close as possible to uclf. Therefore, by Lemma
1, an agreeable pilot under the force feedback (9) will execute
a safe control input that will guide the user to the final goal xf.

2) getNewPath: We discuss Algorithm 3, which is required
by Algorithm 2 to find a new path for the user to follow
to the final goal xf when the user rejects the current path.
The function takes the robot position, the distance to the
current path P , and the saved tree T as inputs. The algorithm
first loops through each node in the tree and gets the non-
holonomic path [23] from that node to its parent node, if
it has one. The purpose of this for loop is to get the node
inear ∈ T corresponding to the nearest branch in T . Once we
have inear, we generate the path from this node all the way
back to the goal, which is the purpose of the while loop. We
can then return this new path P for use in Algorithm 2. If
there are no paths in T that are closer to the robot than dcurr,
then the suggested path does not change.

Algorithm 1 Haptic Feedback Generation

1: Initialize: x(t0), xf, obstacles
2: while ∥x− xf∥ ≥ ϵ do
3: Input: user command uref(t) and robot position x(t)
4: Update goal: xtg ← getTempGoal(x)
5: Define CLF: V (x)← ∥x− xtg∥2
6: Compute input to path: uclf(x, V )←(6)
7: Compute safe input ucbf(x, uclf)←(8)
8: if uref = 0 then
9: No force necessary: F ← 0

10: else
11: Compute force: F ← kf(ucbf − uref)
12: end if
13: Output: F
14: end while

Algorithm 2 xtg ← getTempGoal(x)

1: Initialize: dmax, c, and tree T and optimal path P from
planner [23]

2: Compute distance to path: dpath ← min ∥x− P∥
3: if dpath > dmax then
4: P ← getNewPath(x, dpath, T )
5: end if
6: Get the nearest node on P: inear ← argmin ∥x− P∥
7: if inear + c > length of P then
8: return ttg ← xf
9: end if

10: return ttg ← P(inear + c)

Algorithm 3 P ← getNewPath(x, dcurr, T )
1: Initialize nearest node index inear ← None
2: for each node j in T do
3: if j has a parent node in T then
4: Get path Pjk from j to parent node k
5: Compute distance to the path: d← min ∥x− Pjk∥
6: if d ≤ dcurr then
7: Update smallest distance: dcurr ← d
8: Update nearest node: inear ← j
9: end if

10: end if
11: end for
12: if inear does not exist then
13: return current path P
14: end if
15: Initialize new path: P ← T (inear)
16: Initialize node in path j ← inear
17: while node j has a parent k do
18: Get path Pjk from node j to k
19: Append path Pjk to P
20: Set the current node as the parent node: j ← k
21: end while
22: return new path P



IV. EXPERIMENTAL VALIDATION

Here, we present simulations and hardware experiments
to validate our proposed approach. For the simulations,
we implement an agreeable virtual pilot to demonstrate
the effectiveness of CBFs to achieve collision avoidance
when encountering local dynamic obstacles. In our hardware
experiments, we implement our haptic feedback with a human
pilot, demonstrating the human’s ability to follow a path under
the force feedback. We also show a human-robot disagreement
scenario in which the human must navigate around obstacles
that are unknown to the robot.

The optimization problems in (6) and (8) are solved using
Gurobi1 through its Python bindings. We implement the
non-holonomic RRT∗ described in Section II-C as a global
planner to get the tree and an initial optimal path. For the
implementation of CBF, we define one barrier function hi(x)
for each obstacle i as described in Equation (7). In the CBF
constraint, we define the class K function in (8) as a linear
function: α(x) = qx, where q ∈ R is a constant parameter.

A. Simulations

Here we present simulations with a virtual pilot, which
acts as a proxy for the human user. We assume that the pilot
can sufficiently follow the path under the guidance of the
force feedback in Algorithm 1. We therefore implement the
virtual pilot dynamics (10). We initialize the virtual pilot’s
steering command as uref = 0, and then adjust the command
according (10), allowing the robot to follow dynamics (10).

We conducted 50 trials of different randomized environ-
ments with nine static obstacles and one dynamic obstacle.
The dynamic obstacle has a periodic motion given by the
dynamics

ẋobs = vdyn sinψt,

where vdyn ∈ R2 is a predefined constant velocity and
ψ ∈ R adjusts the period. During each trial, we randomly
generated the start and the final positions on opposite sides
of the environment while ensuring they have no collisions
with the obstacles. We also randomized the positions (initial
position for the dynamic obstacle) of all obstacles to be non-
overlapping. At the start of each trial, we generate a new
tree from xf to x(t0) before beginning Algorithm 1, with
uref computed from the virtual pilot (10). We considered two
cases in simulation as follows.

1) RRT∗ with CLF only: As a baseline comparison, we
consider the case without the CBF. Here, we use the CLF
to guide the user along the path generated by RRT∗ to get
uclf as in (6), but we do not compute ucbf. Thus, the force
feedback is ultimately

F = kf(uclf − uref). (11)

Note that this formulation differs from our proposed feedback
(9): here, we use uclf to compute F , whereas in (9), we
use ucbf. This case allows us to observe the efficacy of our
algorithm without the extra collision avoidance invoked by
the CBF.

1https://www.gurobi.com/

Figure 5 shows the results of one of our virtual pilot
simulations. As we can see in Figure 5a, RRT∗ generates a
collision-free path for the initial static environment. As the
robot follows the suggested path, a local dynamic obstacle
(represented by the orange dot in the figure) oscillates near
the path. Figure 5b shows that a collision happens between
the robot and the dynamic obstacle under the feedback (11),
i.e. when using only RRT∗ without CBF.

Of the 50 trials we conducted in this case study, we
observed only 33 successful trials, with the other 17 trials
containing collisions where the robot was unable to reach
the goal. These results indicate that the feedback (11) cannot
account for all obstacles, and thus we require additional
collision avoidance for obstacles not accounted for by RRT∗.

2) RRT∗ with CLF and CBF (our proposed approach): For
these simulations, the virtual pilot computes ucbf to ensure
collision avoidance (Algorithm 1). Hence, we implement (10)
with force feedback (9). Figure 5c shows that, under the same
initial conditions as that presented in Figure 5b, the robot can
successfully avoid the local dynamic obstacle. Additionally,
of the 50 randomized simulations, we observed no collisions
under our approach. These results demonstrate the ability
of our approach to not only guide the user to a common
goal using a CLF with RRT∗, but also guarantee collision
avoidance using a CBF.

One may notice that in both 5b and 5c, the robot path
deviates slightly from the RRT∗ path, even with an agreeable
pilot (10). This feature is a result of the temporary goal used
to compute uclf. In particular, the variable c, which defines
the lookahead point along the path (Algorithm 2), causes
the temporary goal to be slightly in front of the robot and
along the path. The force feedback will therefore not attract
the robot to travel directly along the path. In fact, for abrupt
curves in the RRT∗ path, the robot will appear to cut corners,
since the robot will be attracted to points after the curve.

B. Hardware Experiments

We conducted hardware experiments with one author acting
as the human pilot. Algorithm 1 was implemented on a
desktop computer (8-core, 32GB RAM, Ubuntu 20.04) using
Robot Operating System (ROS). The experimental setup can
be seen in Figure 1. We conduct experiments with both known
and unknown obstacles – the robot only has knowledge of
the cones, but cannot detect other obstacles. The human uses
a Geomagic Touch2 haptic device to steer an AglieX LIMO3

robot through a remote environment.
The forward (back) position of the Touch’s stylus mapped

to positive (negative) linear velocity of the robot, and left
(right) position of the stylus mapped to positive (negative)
angular velocity. These steering commands (uref) are sent
to the robot from the central computer via Wi-Fi, thus the
human pilot has complete control over the robot steering.
Force feedback was sent to the user through the Geomagic
Touch, such that the feedback would force the stylus to a

2https://www.3dsystems.com/haptics-devices/touch
3https://global.agilex.ai/products/limo



(a) t = 0 s (b) t = 16 s, no CBF applied (c) t = 20 s, CBF applied

Fig. 5: Robot reactions with a local dynamic obstacle. The blue · denotes the start point and the red × denotes the final goal xf. The orange circle
represents the dynamic obstacle, and the gray circles represent static obstacles. The red ring around each obstacle denotes the safe distance dsafe, and the
blue lines are the generated RRT∗ tree T . (a) shows the suggested path generated by RRT* and starting position of the dynamic obstacle at t = 0 s. (b) is
the result at t = 16 s when CBF is not applied. (c) is the result at t = 20 s when CBF is applied. Note that (b) and (c) are the zoomed-in plots for the
region highlighted by the dashed red box in (a).

(a) Tree 1, agreeable human. (b) Tree 2, agreeable human. (c) Tree 3, unknown obstacles

Fig. 6: Human pilot hardware experiments, where the human is responsible for navigating from the blue · to the red ×. The experimental setup is shown
in Figure 1. In (a)-(b), the human obeys the haptic command to follow the optimal path generated by RRT∗, represented by the dashed black line. Solid
lines represent the robot trajectory as navigated by the human. Vectors signify the force F (9) applied to the human along the trajectory. In (c), the human
encounters obstacles unknown to the robot. First, the human must stop at the point shown by a stop sign. Then the human has to avoid two dogs blocking
the initial suggested path (black dashed line). When the human rejects the optimal path, our algorithm suggests another path (black dotted line) from the
RRT∗ tree to the goal.

position that would steer the robot onto the suggested path
or away from obstacles. A real-world example of such force
feedback is assisted driving through a haptic steering wheel.
We demonstrate this force feedback on the Geomagic Touch
in the supplemental video – when the human is navigating
the robot through a narrow passage, they can allow the haptic
device to take control and ensure collision-free navigation.
The force F is converted to linear (Fv) and angular (Fω)
force as follows for appropriate input to the haptic device:

Fv = kv
[
cos θ sin θ

]
F,

Fω = kω arctan

([
− sin θ cos θ

]
F[

cos θ sin θ
]
F

)
,

where kv, kω ∈ R are positive constants, and θ is the robot
heading angle with respect to the global frame.

Note that the human operator does not have any information
about the RRT∗ tree (i.e. the user cannot see the tree or
the suggested path), and thus relies on the feedback for
navigation assistance. The human has a first-person view
of the environment via a camera mounted to the front of
the robot, and its video feed was streamed to the central
computer (see Figure 1a). We implemented two case studies
in our human pilot experiments as follows.

1) Agreeable human: This first case can be considered the
ideal scenario, in which the robot can detect all obstacles, and
the human is able to follow the suggested path without any
obstructions. We tested this case with two different RRT∗ trees,
and thus two different suggested paths. An author teleoperated
the robot, without resisting the force feedback, through the
environment three times for each of these paths. Results
are shown in Figures 6a and 6b, with vectors indicating the
direction and relative magnitude of the force provided to the
human. We observe that the human is able to follow the
suggested path to the goal, without collisions, and without
switching to a new path.

2) Human-robot disagreement: We also wish to demon-
strate a scenario in which the human pilot disagrees with the
planned path and decides to navigate the robot in a different
direction. Such a disagreement usually happens when there
is a local observation by the human that the RRT∗ planner
does not account for, or the user has a strong preference for
a different path. In such a case, the human should be able to
override the force feedback, steer the robot in a safe direction,
and the robot should be able to suggest a different path to
the goal. In our experiments, we demonstrate a scenario in
which the human and robot may disagree. Specifically, we
present a case study in which some obstacles are unknown



to the robot. In Figure 1b, we show the experimental setup
in which unknown obstacles (stuffed dogs) are placed in the
environment, and we show our results for this case in Figure
6c. As seen in Figure 6c, the first suggested path, indicated
by the dashed line, would require the user to collide with a
dog. We see the magnitude of the force increase as the human
deviates the robot from the path. Once the robot determines
that the user has rejected the path (using Algorithm 2), the
robot suggests a new path (dotted line) to the goal using
Algorithm 3, after which the human and robot have little
disagreement. Videos from these experiments are included in
the supplement.

V. CONCLUSIONS

In this work, we propose an algorithm to enable collab-
orative navigation between a human operator and a ground
robot. The human pilot uses a haptic device to steer the
robot, and the robot provides collision avoidance and path
suggestions to the human via force feedback. We implement a
non-holonomic RRT∗ path planner for navigation suggestions,
with a CLF to help drive the human toward and along the path.
To correct any CLF inputs that would cause collisions with
obstacles, such as small or dynamic obstacles, we utilize a
CBF to ensure collision-free navigation. Our simulations and
hardware experiments demonstrate an effective co-navigation
algorithm, guaranteeing collision avoidance while ensuring
the robot reaches the goal.
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